fermacell[®] fibre gypsum board and Hardie[®] facade boards

James Hardie solutions for cross-laminated timber (CLT)

Table of contents

Building with cross-laminated timber 1.

1.1 Cross-laminated timber/CLT

2	Workin	n
4 .		ч.

1.1 Cross-taininateu timper/C	LI 3-4	Z.I Storage/Iransport/	
		Building site	20-21
1.2 Technical data	4-13	Storage	20
fermacell® fibre gypsum board	5	Transport of boards	20
fermacell® Firepanel A1	6	Building site conditions	21
fermacell [®] Flooring element	7	Transport of prefabricated elements	
fermacell® Therm25™		in production and to the building site	21
underfloor heating systems	8		
Levelling Solutions	9		
fermacell® Powerpanel H ₂ 0	10	2.2 Jointing options	22-24
Hardie [®] Panel & Hardie [®] Archit	ectural	Jointing options for fastening	
Panel facade cladding	11	fermacell® fibre gypsum board to CL	T 22
Hardie [®] Plank facade cladding	12	Element joint formation	
Hardie® VL Plank facade claddir	ng 13	cross-laminated timber/CLT	23
		Expansion/movement joints	24
1.3 fermacell™			
design solutions – wall	14-17	2.3 Fixing	25-27

1.3 fermacell™

design solutions – wall	14-17
fermacell® fibre gypsum board	14
fermacell® Firepanel A1	15
fermacell® fibre gypsum board –	
cavity wall	15
fermacell® Firepanel A1 – cavity wall	16
fermacell® fibre gypsum board- ,	
fire walls	16
fermacell® fibre gypsum board –	
fire walls cavity wall	16
1.4 fermacell™	

	design solutions – ceiling	18-19
CLT	ceiling	18

de/Transnert/

	20	
of boards	20	3
te conditions	21	
of prefabricated elements		F
on and to the building site	21	f

Jointing options for fastening	
fermacell® fibre gypsum board to CLT	22
Element joint formation	
cross-laminated timber/CLT	23
Expansion/movement joints	24

2.3 Fixing 7

3. Fire protection

3.1	Fire protection with cross-laminated timber/CLT	28-29
3.2	fermacell [®] fibre gypsum boar	d –
	fire protection lining	30-31
Req	uirements	
for f	ire protection linings	30
3.3	Joint design and fire protectio	'n
	Lining – project solution	32-34
Cori	ner details	33
Sing	gle-layer lining/Corner details	33
Mul	ti-layer lining/Corner details	34
3.4	Steel components/steel bean	n and
	cross-laminated timber ceilir	ngs –
	project solution	36
3.5	Bulkhead systems/	
	implementations –	
	project solution	38-39

Sound insulation 4.

4.1 Sound insulation with		
	cross-laminated timber	40-42
Турі	cal acoustic parameters	40
Requirements and verifications		41

4.2 Examples of sound insulation values wall constructions/ cross-laminated timber 44-45

4.3 Building separating walls 46

The content is in line with the latest working standards. The most current documents should always be used.

Please note that illustrations of details and drawings are shown schematically and can only be seen in conjunction with the respective dimensions and texts. Subject to technical modifications.

1. Building with cross-laminated timber

1.1 Cross-laminated timber/CLT

Wood has been a proven building material for centuries. Following the Industrial Revolution in the 19th century and taking into consideration the fact that a large number of homes had to be built in a short space of time for the people crowding into the cities in search of work, wood was replaced by new building materials that could be produced in large quantities. Timber construction was a niche market for a long time. Increasing ecological awareness has recently led to the rediscovery of wood as a valuable, resource-efficient and sustainable building material.

The proportion of timber buildings and mixed timber constructions in the total construction volume has been rising steadily for years. This is also due in part to intensive and practice-orientated research, which has clarified many open questions relating to building construction, structural performance and building physics.

The development of cross-laminated timber (CLT), which has been established on the market for just over 10 years, is introducing timber construction to projects that were previously only possible in concrete or steel. In addition to the construction of individual detached and prefabricated houses and individual multi-storey residential buildings, large/high residential and office buildings in urban areas, commercial buildings, production halls and even bridges can now be easily realised. Architects and planners now have available to them a solid, monolithic product that makes the planning and realisation of large timber construction projects much easier thanks to its defined structural-physical properties.

Cross-laminated timber or CLT, as it is known internationally, is a large-surface solid wood slab consisting of at least three layers of boards glued together at right angles to each other. The solid boards are highly resilient, offer high dimensional stability and with their technical and physical properties are a serious competitor to concrete and steel. In contrast to other construction methods, however, the production of cross-laminated timber requires very little energy. Like all timber building materials, cross-laminated timber stores CO₂ and therefore makes a sustainable contribution to climate protection. The high degree of prefabrication of weather-resistant elements manufactured in the factory under ideal conditions ensures short construction times. Openings for windows and doors are simply cut out. There are no prescribed grids to be adhered to. Good diffusion properties create a pleasant indoor climate.

fermacell® fibre gypsum boards clearly support the quality and time advantages of cross-laminated timber construction and are a good addition with their technical and structural-physical properties. Their quick and easy assembly on site and at the factory is a major advantage. They are stable, highly resilient and resistant to mechanical stresses and are just as suitable for wall, ceiling and floor constructions as they are for finishing attractive bathrooms.

Fire protection

In combination with fermacell® fibre gypsum boards, cross-laminated timber construction offers further possibilities in multi-storey timber construction. With its high fire protection performance, the cladding of cross-laminated timber elements with fermacell® fibre gypsum boards enables high fire resistance classifications up to F120-B (REI 120) and permissible loads of 200 kN/m with a streamlined wall configuration. Depending on the component requirements, cross-laminated timber can be prevented from igniting for defined periods of time, making it possible to utilise the full structural potential of the cross-laminated timber. With the building material classification A2 as a non-combustible building material in accordance with EN 13501, fermacell® fibre gypsum boards also help to reduce combustible surfaces in building units.

Sound insulation

The excellent sound insulation properties of fermacell® fibre gypsum boards have been confirmed by various national/international testing institutes in conjunction with cross-laminated timber construction. Building with conventional solid construction methods provides acoustic properties due to its heavy and inflexible design based on the component mass, which can be easily achieved in cross-laminated timber construction by intelligently combining system components to provide equivalent or better solutions. Depending on the construction variants and the arrangement of the system layers, fermacell® fibre gypsum boards can be used to create high-performance solutions for wall and ceiling structures.

Healthy living environment

When it comes to healthy living environments, fermacell® fibre gypsum boards are very beneficial. They regulate indoor climate and humidity. In addition, they can help provide a balanced thermal environment with their thermal mass properties.

Ecology/sustainability

fermacell® fibre gypsum boards also make a good addition to cross-laminated timber from an ecological point of view. They are made from natural raw materials gypsum, recycled paper and water and, in conjunction with timber construction, fulfil the requirement for sustainable and healthy building throughout the entire structure. The Institut Bauen und Umwelt e. V. has now confirmed in an EPD that fermacell® fibre gypsum boards and fermacell® flooring elements store CO₂. As such, fermacell[®] fibre gypsum boards make the same sustainable contribution to climate protection as wood. However, EPD verification also means that fermacell® fibre gypsum boards and fermacell® flooring elements can be installed in all buildings that are to be assessed in accordance with the DGNB, BNB, BREEAM and LEED building certification systems.

Cross-laminated timber with fermacell[®]:

- \cdot short construction times
- dry construction method
- $\cdot\,$ automated production processes
- $\,\cdot\,$ high standard of quality
- great range of prefabrication options
- large-sized components can be realised
- complex geometries can be implemented
- complements timber frame construction
- low weight enables maximum load capacities
- high level of fire protection
- ecological and climate-friendly solid construction method
- large quantities of CO₂ are stored

1.2 Technical data

fermacell[®] fibre gypsum boards are made exclusively from natural materials that have a positive impact on a healthy indoor climate. They offer stability and safety in high-quality timber construction – ideal for timber construction solutions in fire protection, sound insulation, structural performance and domestic bathrooms. fermacell[®] fibre gypsum boards store CO₂ * and have an EPD. They help to make the planning and construction of buildings more ecological.

The environmental declarations provide information on products and their use with regard to the environment and health. Our fibre gypsum boards can be reused and recycled after use. * The storage of CO₂ refers to the entire product life cycle of fermacell[®] fibre gypsum boards and floor elements.

fermacell[®] fibre gypsum boards

Homogeneous gypsum-bonded construction board made from gypsum, recycled cellulose fibres and recycled water.

 Board material for timber / dry construction solutions with special requirements regarding fire, sound or moisture protection

Environmental Product Declaration (EPD)

Characteristics	
Gross density ρ_k	1 150 ± 50 kg/m³
Water vapour diffusion resistance coefficient $\boldsymbol{\mu}$	13
Thermal conductivity λ	0.32W/mK
Specific heat capacity c	1.0 kJ/kgK
Brinell hardness	30 N/mm²
Thickness swelling after 24 hours of water storage	<2%
Thermal expansion coefficient	0.001 %/K
Extension/shrinkage at 30 % change in relative humidity (20 °C)	0.25 mm/m
Moisture content equilibrium at 65 % relative humidity and 20 °C air temperature	1.3 %
pH value	7–8
Usage class according to EN 1995-1-1	Type 1 and 2

Dimensional tolerances for standard board sizes at constant humidity			
Length, width	+0/-2mm		
Diagonal difference	≤2mm		
Thickness: 10/12.5/15/18 ±0.2 mm			

		1500×1000
Approvals/Identification		2000×1250
European Technical Assessment	ETA-03/0050	2500×1250
National application document - D	Z-9.1-434	2540×1250
Identification according to	GF-I-W2-C1	2650×1250
EN 15283-2		2750×1250
Building material class according	non-combustible, A2	3000×1250
Component classifications	national/international	Cut-to-size p
	0 TCI 0000 0/	
National classification (according to DIN 4102-4)	G ISt 2022-04-a	Sizes with d

Board thickness and weight					
Thickness	10 mm	12.5 mm	15 mm	18 mm	
Approx. weight per m ²	11.5 kg	14.5 kg	17.5 kg	21 kg	
Sizes in mm*					
1 500 × 1 000	•	•	•	•	
2000×1250	•	•	•	•	
2500×1250	•	•	•	•	
2540×1250	•	•	•	•	
2650×1250		•			
2750×1250		•	•	•	

Cut-to-size parts upon request				
Sizes with drywall edge (TB edge) in mm				
2000×1250**		•		
2540×1250		•		
2750×1250		•	•	
Cut-to-size parts upon request				

* Additional formats and thicknesses upon request ** TB edge all around

fermacell® Firepanel A1

Homogeneous fibre-reinforced gypsumbonded wood /dry construction board with paper fibres and additives of non-combustible fibres, made water-repellent at the factory.

- Complies with the highest European building material class A1 (EN13501-1)
- Provides even more efficient and slimmer components in fire protection than the well-known fermacell[®] fibre gypsum board
- Processing just as simple and quick as the original fermacell[®] fibre gypsum board

Characteristics	
Gross density ρ_k (dry)	$1200\pm50kg/m^3$
Flexural strength (dry)	> 5.8 N/mm²
Water vapour diffusion resistance coefficient μ according to EN ISO 12572	16
Thermal conductivity $\lambda_{_{\!R}}$ according to DIN EN 12667	0.38W/mK
Extension/shrinkage at 30 % change in relative humidity (20 °C) according to EN 318	0.25 mm/m
Moisture content equilibrium at 65 % relative humidity and 20 °C air temperature according to EN 322	1.30%
Compressive strength perpendicular to surface	> 18 N/mm²
Alkalinity (pH value)	7-8
Elasticity of flexure module	> 4 500 N/mm ²

Dimensional tolerances for standard board sizes at constant humidity		Approvals/Identification		
		Identification according to EN 15283-2	GF-I-W2-C1	
Length, width	+0/-2 mm	Building material category according to	non-combustible, A1	
Diagonal difference	≤2mm	EN 13501-1		
Thickness	±0.2 mm	IMO FTPC part 1	non-combustible	
		Component classifications	national/European	

Characteristics in relation to board thickness				
12.5 mm	15 mm			
15 kg	18 kg			
•	•			
	12.5 mm 15 kg			

Additional formats and thicknesses upon request

fermacell® flooring element

Dry screed fibre gypsum boards with and without insulation, for use in new building and renovation.

• Can be walked on immediately after the adhesive has cured.

Environmental Product Declaration (EPD)

	Thickness	Description Insulating material	Size [mm]	Crowd load (kN/m²)	Thermal resistance (m² K/W)	Building material class according to EN 13501
Flooring elements						
/	20 mm	2 E 11 (EE 20)	1 500 × 500	0.23	0.06	A2 _{fl} -s1
	25 mm	2 E 22 (EE 25)	1 500 × 500	0.29	0.08	A2 _{fl} -s1
Flooring elements (HF) with wood	fibreboard in 10 mm thickness				
//	30 mm	2 E 31 (EE 20 HF 10)	1 500 × 500	0.25	0.26	B _{fl} -s1
	35 mm	2 E 33 (EE 25 HF 10)	1500×500	0.25	0.28	B _{ft} -s1
Flooring elements (MW) with high	-grade mineral wool in 10 or 20 mm thi	ckness			
	30 mm	2 E 32 (EE 20 MW 10)	1 500 × 500	0.25	0.28	A2 _{fl} -s1
	35 mm	2 E 34 (EE 25 MW 10)	1 500 × 500	0.25	0.31	A2 _{fl} -s1
	45 mm	2 E 35 (EE 25 MW 20)	1 500 × 500	0.33	0.31	A2 _{fl} -s1
Flooring elements (PS) with expan	nded polystyrene rigid foam ¹⁾ in 20 or 30	mm thickness			
	40 mm	2 E 13 (EE 20 PS 20)	1500×500	0.23	0.56	B _{fl} -s1
	50 mm	2 E 14 (EE 20 PS 30)	1 500 × 500	0.23	0.81	B _{ft} -s1
Flooring elements (V) with felt fib	re insulation panel in 9 mm thickness				
//	29 mm	2 E 16 (EE 20 V 9)	1 500 × 500	0.24	0.29	B _{fl} -s1
	34 mm	2 E 26 (EE 25 V 9)	1 500 × 500	0.32	0.30	B _{fl} -s1

 $^{1]}$ = according to EN13163 EPS DE0100 KPa $\,$

Approvals

European Technical Assessment ETA-18/0723

fermacell[®] Therm25™ underfloor heating systems

fermacell® Therm25™ element and fermacell® Therm25™-125 element

- Standard board with groove patterns for lengthwise installation with deflection grooves
- \cdot $\,$ For use on the surface

fermacell® Therm25™ round element and fermacell® Therm25™-125 round element

 Additional element for special floor plans, doorways, when joining pipes and in the area of the heating manifold

Characteristics fermacell® fibre gypsum boards	
European Technical Assessment	ETA-03/0050
Gross density (production specification) ρ_{k}	$1150 \pm 50 \text{kg/m}^3$
Water vapour diffusion resistance coefficient $\boldsymbol{\mu}$	13
Coefficient of thermal conductivity $\boldsymbol{\lambda}$	0.32 W/mK
specific heat capacity c	1.1 kJ/kgK
Brinell hardness	30 N/mm²
Thickness swelling after 24 hours of water storage	< 2 %
thermal expansion coefficient	0.001%/K
Extension/shrinkage at 30 % change in relative humidity (20 °C)	0.25 mm/m
Moisture content equilibrium at 65% relative humidity and 20°C air temperature	1.3%
Building material class according to EN 13501-1 (non-combustible)	A2
pH value	7-8

Characteristics fermacell® Therm25™ underfloor heating element			
Dimensions	fermacell [®] Therm25 [™] element, (lengthwise and deflection grooves): 1000×500 mm		
	fermacell® Therm25™ round element, (round grooves): 500×500 mm		
Element thickness	25 mm		
Groove width	16 mm		
recommended heating pipe	MKV composite pipe, 16×2mm, with DIN Certco registration		
Pipe spacing	167mm (full occupancy)		
Weight Therm25™ element	27 kg/m²		
Weight Therm25™ round element	23 kg/m²		

Levelling Solutions

Characteristics fermacell™ floor levelling compound

Building material class	A1 (according to EN 13501-1)
Coefficient of thermal conductivity $\boldsymbol{\lambda}_{_{\!R}}$	1.1 W/mK
Gross density	1 700–1 800 kg/m ³
max. coating thickness	20 mm
Consumption per m ²	approx. 1.7 kg per 1 mm coating thickness
Compressive strength (EN 13813)	C25
Flexural strength (EN 13813)	F6
Chair castor strength according to DIN 68131 or EN 12529	as of minimum 1 mm coating thickness
Dead weight for 10 mm coating thickness	0.17 kN/m ²
Storage	9 months dry

Building material class	A1 (according to EN 13501-1)
Coefficient of thermal conductivity $\boldsymbol{\lambda}_{_{\!R}}$	0.09 W/mK
Grain size	0.2 to 4 mm
Bulk density	approx. 400 kg/m³
min. filling height	10 mm
max. filling height (loose)	100 mm area of application 1 60 mm area of application 2–4
Fill quantity per m²	approx. 10 litres per 1 cm filling height
Dead weight for 10 mm coating thickness	0.04 kN/m²
Storage	dry

Building material class	A2-s1, d0 (according to EN 13501-1)	
Coefficient of thermal conductivity $\boldsymbol{\lambda}$	0.12W/mK	
Compressive strength	0.4 to 0.5 N/mm² (according to EN 826)	
Dry gross density	approx. 350 kg/m³	
min. filling height	30 mm	
max. filling height	2000 mm (in layers up to 500 mm)	
Fill quantity per m²	approx. 10 litres per 1 cm filling height	
Vapour diffusion	μ=7 (according to EN 12086)	
Dead weight for 10 mm coating thickness	0.035 kN/m²	
Storage	6 months dry and frostfree	

Characteristics fermacell™ bonded levelling compound T	
Building material class	A2-s1, d0 (according to EN 13501-1)
Coefficient of thermal conductivity $\boldsymbol{\lambda}$	0.10 W/mK
Compressive strength	≥0.5 N/mm² (according to EN 826)
Dry gross density	approx. 390 kg/m³
min. filling height	10 mm
max. filling height	2 000 mm (in layers of max. 300 mm)
Fill quantity per m²	approx. 10 litres per 1 cm filling height
Vapour diffusion	μ = 5 (according to EN 12086)
Dead weight for 10 mm coating thickness	0.039 kN/m ²
Storage	12 months dry and frostfree

Characteristics fermacell™ honeycomb fill

-	

Building material class	A1 (according to DIN 4102)
Coefficient of thermal conductivity $\boldsymbol{\lambda}_{_{\!\boldsymbol{R}}}$	0.7 W/mK
Grain size	1 to 4 mm
Bulk density	approx. 1500 kg/m³
min. filling height	30 mm
max. filling height	60 mm
Fill quantity per m²	approx. 10 litres per 1 cm filling height
Dead weight	$0.45kN/m^2$ for $30mm$ honeycomb $0.90kN/m^2$ for $60mm$ honeycomb
Storage	dry

$fermacell^{\circledast}\ Powerpanel\ H_2O$

Cement bonded lightweight concrete board with laminated structure, reinforced on both sides with alkali-resistant glass fibre mesh.

· Permanently water resistant, also suitable for areas requiring chemical resistance

Category A egory: nosed to the

EN 12467

Characteristics	
Gross density ρ _k (dry)	1 000 kg/m³
Flexural strength (following EN 12467)	≥ 6.0 N/mm²
Water vapour diffusion resistance coefficient μ according to EN ISO 12572	56
Thermal conductivity λ_R according to EN 12664	0.17W/mK
Swell/shrinkage at between 30 % and 65 % change in relative humidity (20 °C) according to EN 318	0.15 mm/m
Swell/shrinkage at between 65% and 85% change in relative humidity (20 °C) according to EN 318	0.10 mm/m
Moisture content equilibrium at 65 % relative humidity and 20 °C air temperature according to EN 322	≥5%
Compressive strength according to EN 789	11.7 N/mm²
Alkalinity (pH value)	approx. 10
Flexural elasticity module (following EN 12467)	4 200 N/mm²
Usage category in terms of weather resistance according to EN 12467	A, B, C, D

Characteristics in relation to board thickness	
Thickness	12.5 mm
Approx. weight per m²	12.5 kg
Sizes in mm*	
1000×1250	•
2000×1250	•
2600×1250	•
3010×1250	•

Approvals	
European Technical Assessment	ETA-07/0087
National application document - D (for indoor use)	AbZ Z-31.20-163
National application document - D (for outdoor use)	AbZ Z-31.4-181
Building material class according to EN 13501-1	non-combustible, A1
IMO FTPC part 1	non-combustible
Component classification	national/European

* Additional formats and thicknesses upon request

Dimensional tolerances for standard board sizes at constant humidity						
Length, width	±1mm					
Diagonal difference	≤2mm					
Thickness	±0.5 mm					

Hardie® Panel & Hardie® Architectural Panel facade cladding

The durability and our guarantee make Hardie® Panel & Hardie® Architectural Panel an ideal product for cost-effective and attractive facade design.

The low maintenance requirements and high weather resistance allows the cost-effective and intelligent realisation

- of various projects.
- $\cdot\,$ Combines efficiency and design
- · Non-combustible (A2, s1-d0)
- 15-year guarantee on Hardie[®] Panel & Hardie[®] Architectural Panel facade claddings

Hardie® Panel Smooth

Environmental Product Declaration (EPD)

Characteristics ²⁾	Hardie [®] Panel	Hardie [®] Architectural Panel
Thickness in mm	8	8
Length×width in mm	3048×1220	3 048 × 1 220
Approx. weight per m ²	11.2 kg	11.2 kg
Weight per unit	41.7 kg	41.7 kg
Gross density ρ_k (dry)	≈ 1 300 kg/m³	≈ 1 300 kg/m³
Bending strength (according to EN 12467) after dry storage	Smooth ¹⁾ 15.5 MPa perpendicular to the fibre 10.1 MPa parallel to the fibre	14.0 MPa perpendicular to the fibre 8.5 MPa parallel to the fibre
Bending strength (according to EN 12467) after wet storage	Smooth ¹⁾ 11.5MPa perpendicular to the fibre 7.5MPa parallel to the fibre	10.0 MPa perpendicular to the fibre 6.0 MPa parallel to the fibre
Thermal conductivity λ_{R} (according to EN 12664)	0.23 W/mK	0.23 W/mK
Relative linear deformation in the range between 30% and 90% (20°C) change in relative humidity (according to EN 318)	< 0.05 %	< 0.05 %
Elasticity modulus	Smooth ¹⁾ 6 200 N/mm ²	5 100 N/mm ²
Category and class (according to EN 12467)	Category A, class 2	Category A, class 2
¹⁾ Smooth ²⁾ Values for the static design can be found in	the General Design Certification (Z-31.4-193)	

Dimensional tolerances for standard board sizes at constant humidity							
-	Hardie [®] Panel	Hardie [®] Architectural Panel					
Length	± 3.66 mm	±3.66 mm					
Width	±0.8 mm	±0.8mm					

width	±0.8 mm	±0.8 mm	
Thickness	±0.8 mm	-0.8/+1.2 mm	

Hardie® Architectural Panel – Brushed concrete

Hardie® Plank facade cladding

Hardie[®] Plank facade claddings offer the natural beauty of wood, but are made of indestructible fibre cement.

- \cdot $\,$ Weather resistant beauty
- 15-year guarantee on Hardie[®] Plank facade claddings
- One-person installation with the help of the Gecko Gauges
- · ColourPlus Technology

Hardie[®] Plank Wood structure

Hardie® Plank Smooth

Environmental Product Declaration (EPD)

Characteristics 8 Thickness in mm 3600×180 Length × width in mm Approx. weight per m² 11.2 kg Weight per unit 7.4 kg Gross density ρ_k (dry) ≈1300 kg/m³ Bending strength (following EN 12467) After dry storage: > 10 MPa After wet storage: > 7 MPa 0.23W/mK Thermal conductivity $\lambda_{_{\!R}}$ (according to EN 12664) Relative linear deformation in the range between 30% and 90% (20 °C) change in relative ≤0.05% humidity (according to EN 318) Category and class (according to EN 12467) Category A, class 2

Approvals

Building material class according toNon-combustible,EN 13501-1A2-s1,d0

Hardie® VL Plank facade cladding

Hardie[®] VL Plank facade claddings offer an innovative tongue and groove system and enable non-visible fastening for the construction of

curtain-type, rear-ventilated façades.

- \cdot Weather resistant beauty
- $\cdot \;$ Maintenance free
- 15-year guarantee on Hardie[®] VL Plank facade claddings
- · ColourPlus Technology

Hardie® VL Plank wood structure

Characteristics	
Thickness in mm	11
Length×width in mm	3600×214
Approx. weight per m ²	13.6 kg
Weight per unit	10.5 kg
Gross density ρ_k (dry)	≈ 1 300 kg/m³
Bending strength (according to EN 12467)	15 MPa perpendicular to the fibre > 11 MPa parallel to the fibre
Thermal conductivity λ_R (according to EN 12664)	0.23W/mK
Relative linear deformation in the range between 30% and 90% (20 °C) change in relative humidity (according to EN 318)	< 0.05 %
Category and class (according to EN 12467)	Category A, class 2

Approvals

Building material class according toNon-combustible,EN 13501-1A2-s1,d0

1. Building with cross-laminated timber

1.3 fermacell[™] design solutions – wall

fermacell[®] fibre gypsum boards

System reference	System drawing	Wall thickness	Sub- structure ⁽¹³⁾ CLT	Boarding per side	Mineral wool ⁽¹⁾ Thickness/ Gross density	Applied load	Mass per unit	Airborne sound insulation index R _w (C; C _{tr})	Fire protection
		[mm]	[mm]	[mm]	[mm]/[kg/m³]	[kN/m]	[kg/m²]	[dB]	
1 HTM 11		≥100	≥80	10	-	160	≥60	R _w ≥37 [-1;-3]* Tr. No.: 04-01031	REI 30
1 HTM 23		≥100	≥80	10	-	40	≥60	R _w ≥37 [-1;-3]* Tr.no.:04-01030	REI 60
1 HTM 28		≥116	≥80	18	-	150	≥83	R _w ≥39 [-1;-3]* Tr.no.:04-01224	REI 60
1 HTM 24		≥130	≥80	2×12.5	-	160	≥96	R _w ≥41 [-1;-3]* Tr. no.: 04-01029	REI 60
1 HTM 21		≥145	≥120	12.5	-	200	≥87	R _w ≥40 (-1;-3)* Tr. no.: 04-01028	REI 60
1 HTM 22		≥172	≥ 120	12.5 (one-sided on resilient Top Hat)	Glass wool	200	≥89	R _w ≥53 (-4;-11)* Tr. no.: 04-01027	REI 60
1 HTM 34		≥130	≥80	2×12.5	-	40	≥96	R _w ≥41 [-1;-3]* Tr. no.: 04-01026	REI 90
1 HTM 32		≥145	≥120	12.5	_	120	≥87	R _w ≥40 (-1;-3)* Tr. no.: 04-01024	REI 90
1 HTM 33		≥172	≥120	12.5 (one-sided on resilient Top Hat)	Glass wool	120	≥89	R _w ≥53 [-4;-11]* Tr. No.: 04-01023	REI 90
1 HTM 31		≥ 180	≥120	2×15	-	200	≥129	R _w ≥44 [-1;-3]* Tr. No.:01-01021	REI 90
1 HTM 42						150			REI 120
1 HTM 41		≥ 156	≥ 120	18	_	120	≥ 100	R _w ≥41 [-1;-2]* Tr. No.:01-01022	REI 120

* Calculated according to building acoustics software INSUL, Version v.9.0.8

** By calculation according to EN12354-1:2000, p. 143

fermacell[®] Firepanel A1

System reference	System drawing	Wall thickness	Sub- structure ⁽¹³⁾ CLT	Boarding per side	Mineral wool ⁽¹⁾ Thickness/ Gross density	Applied load	Mass per unit	Airborne sound insulation index R _w (C; C _{tr})	Fire protection
		[mm]	[mm]	[mm]	[mm]/[kg/m ³]	[kN/m]	[kg/m²]	[dB]	
1 HTM 21 A1		≥100	≥80mm	10	-	45	≥61	R _w ≥37 (-1;-3)* Tr. No.: 04-01020	REI 60
1 HTM 41 A1		≥235	≽80mm	12.5 (CW50) 10	40/40	45	≥95	R _w ≥71 [-6;-14]* Tr. No.: 04-01019	REI 120

fermacell® fibre gypsum boards – cavity wall

System reference	System drawing	Wall thickness	Sub- structure ⁽¹³⁾ CLT	Boarding per side	Mineral wool ⁽¹⁾ Thickness/ Gross density	Ap- plied load	Mass per unit	Airborne sound insulation index R _w (C; C _{tr})	Fire protection
		[mm]	[mm]	[mm]	[mm]/[kg/m ³]	[kN/m]	[kg/m²]	[dB]	
1 HTM 12		≥ 190	≥ 2×80 mm 10 mm air gap	10	-	160 each wall side	≥96	R _w ≥49 (-3;-11)* Tr. No.: 04-01017	REI 30
			100 mm air gap		80/10			R _w ≥69 [-2;-6]* Tr. No.: 04-01018	
1 HTM 25		≥190	≥ 2×80 mm 10 mm air gap	10	-	40 each wall side	≥96	R _w ≥49 (-3;-9)* Tr. No.: 01-01015	REI 60
			100 mm air gap		80/10			R _w ≥69 [-2;-6]* Tr. No.: 04-01016	
1 HTM 26		≥220	≥ 2×80 mm 10 mm air gap	2×12.5	-	160 each wall side	≥ 132	R _w ≥54 (-3;-11)* Tr. No.: 04-01014	REI 60
			100 mm air gap		80/18			R _w =74.5 [-2;-4] Tr. No.: 04-00961	
1 HTM 27		≥275	≥ 2×120 mm 10 mm air gap	12.5	-	200 each wall side	≥143	R _w ≥55 (-5;-12)* Tr.No.: 04-01012	REI 60
			100 mm air gap		80/10			R _w ≥75 [-2;-6]* Tr. No.: 04-01013	

* Calculated according to building acoustics software INSUL, Version v.9.0.8

System reference	System drawing	Wall thickness	Sub structure ⁽¹³⁾ CLT	Boarding per side	Mineral wool ⁽¹⁾ Thickness/ gross density	Applied load	Mass per unit	Airborne sound insulation index R _w (C; C _{tr})	Fire protection
		[mm]	[mm]	[mm]	[mm]/[kg/m³]	[kN/m]	[kg/m²]	[dB]	
1 HTM 35		≥220	≥ 2×80 mm 10 mm air gap	2×12.5	-	40 each wall side	≥ 132	R _w ≥54 (-4;-11)* Tr. No.: 04-01011	REI 90
			100 mm air gap		80/18			R _w =74.5 (-2;-4) Tr. No.: 04-00961	
1 HTM 36		≥275	≥ 2×120 mm 10 mm air gap	12.5	-	120 each wall side	≥ 143	R _w ≽55 (-5;-12)* Tr. No.: 04-01008	REI 90
			100 mm air gap		80/10			R _w ≥75 (-2;-6)* Tr. No.: 04-01009	
1 HTM 37		≥310	≥ 2×120 mm 10 mm air gap	2×15	-	200 each wall side	≥ 185	R _w ≥60 [-5;-13]* Tr. No.: 04-01007	REI 90
			100 mm air gap		80/18			R _w =74.5 (-2;-4) Tr. No.: 04-00961	
1 HTM 43		≥286	≥ 2×120 mm 10 mm air gap	18	-	120 each wall side	≥ 100	R _w ≽57 (-5;-12)* Tr. No.: 04-01006	REI 120
			100 mm air gap		80/18			R _w ≥77 [-2;-6]* Tr. No.: 04-01010	
1 HTM 44		≥310	≥ 2×120 mm 10 mm air gap	2×15	-	150 each wall side	≥ 185	R _w ≽60 (-6;-15)* Tr. No.: 04-01003	REI 120
			100 mm air gap		80/18			R _w =74.5 (-2;-4) Tr. No.: 04-00961	

fermacell[®] fibre gypsum boards – cavity wall

* Calculated according to building acoustics software INSUL, Version v.9.0.8

fermacell® Firepanel A1 – cavity wall

System reference	System drawing	Wall thickness	Sub- structure ⁽¹³⁾ CLT	Boarding per side	Mineral wool ⁽¹⁾ Thickness/ gross density	Applied load	Mass per unit	Airborne sound insulation index R _w (C; C _{tr})	Fire protection
		[mm]	[mm]	[mm]	[mm]/[kg/m³]	[kN/m]	[kg/m²]	[dB]	
1 HTM 22 A1		≥ 190	≥ 2×80mm 10mm air gap 100mm air gap	10		45 each wall side	≥97	R _w ≥49 (-3;-9)* Tr. No.: 04-01004 R _w =69 (-2;-6)*	REI 60
	1							Tr. No.: 04-01005	

* Calculated according to building acoustics software INSUL, Version v.9.0.8

	57	•				5 1		5	
System reference	System drawing	Wall thickness	Sub- structure ⁽¹³⁾ CLT	Boarding per side	Mineral wool ⁽¹⁾ Thickness/ gross density	Applied load max. Stress sc,0,d,R90	ed load Mass Airborne sound Stress per unit insulation index I,R90 (C; C _{tr})		Fire protection
		[mm]	[mm]	[mm]	[mm]/[kg/m ³]	[N/mm ²]	[kg/m²]	[dB]	
4 HTM 32		≥146	≥80	15+18	-	3.0	≥117'	R _w ≥42* [-1;-2] Tr. No.: 04-01002	REI 90-M

fermacell® fibre gypsum boards – fire walls – load-bearing space-enclosing

* By calculation according to EN12354-1:2000, p. 28

System reference	System drawing	Wall thickness	Sub- structure ⁽¹³⁾ CLT	Boarding per side	Mineral wool ⁽¹⁾ Thickness/ gross density	Applied load	Mass per unit	Airborne sound insulation index R _w (C; C _{tr})	Fire protection
		[mm]	[mm]	[mm]	[mm]/[kg/m ³]	[kN/m]	[kg/m²]	[dB]	
4 HTM 21		≥130	≥80	2×12.5	-	150	≥69	R _w ≥41 [-1;-3]* Tr. No.: 04-01225	REI 60-M

* By calculation according to EN12354-1:2000, p. 28

fermacell® Firepanel A1 – fire walls

System reference	System drawing	Wall thickness	Sub- structure ⁽¹³⁾ CLT	Boarding per side	Mineral wool ⁽¹⁾ Thickness/ gross density	Applied load	Mass per unit	Airborne sound insulation index R _w (C; C _{tr})	Fire protection
		[mm]	[mm]	[mm]	[mm]/[kg/m ³]	[kN/m]	[kg/m²]	[dB]	
4 HTM 41 A1		≥ 195	≥120	3×12.5	-	80	≥ 152	R _w ≥46* (-2;-3) Tr. No.: 04-01039	REI 120-M

* By calculation according to EN12354-1:2000, p. 28

fermacell[®] fibre gypsum boards – fire walls double shell

System reference	System drawing	Wall thickness	Sub- structure ⁽¹³⁾ CLT	Boarding per side	Mineral wool ⁽¹⁾ Thickness/ gross density	Applied load max. Stress sc,0,d,R90	Mass per unit	Airborne sound insulation index R _w (C; C _{tr})	Fire protection
		[mm]	[mm]	[mm]	[mm]/[kg/m ³]	[N/mm²]	[kg/m²]	[dB]	
4 HTM 31		≥236	 > 2 × 80 mm (Cross-lami- nated timber) 10 mm air gap 100 mm air gap 	18+15	- 80/18	3 per wall shell	≥ 152	R _w ≥56 [-5;-13]* R _w =74.5 [-2;-4] Tr. No.: 04-00961	REI 90-M

* Calculated according to building acoustics software INSUL, Version v.9.0.8

1. Building with cross-laminated timber

1.4 fermacell[™] design solutions – ceiling

CLT ceiling

System drawing	Construction 2 E 22 (2 × 12.5 mm fermacell® fibre gypsum boards) on 30 mm fermacell™ honeycomb insulating system on 20 mm Florrock GP on 60 mm EPS 150 kPa	Constr. height (Floor) mm 165	Sound insulation Impact noise L _{n,w} (C _{L,100-2500} C _{L50-2500}) dB 46.0 (+2 +8)	Airborne sound R _w [C ₁₀₀₋₃₁₅₀ C _{tr,100-3150} C ₅₀₋₃₁₅₀ C _{tr,50-2500}] dB 67.8 [-4 -12 -9 -21]	Verification	Area of application
25 30 80 30 30 30	on 30mm fermacell™ honeycomb insulating system 2 E 22 [2 × 12.5 mm fermacell® fibre gypsum boards] on 30mm fermacell™ honeycomb insulating system on 80mm Schneider 140 kPa on 30mm fermacell™ honeycomb insulating system	165	48.4 [+1 +5]	68.3 [-4 -11 -9 -22]	TrNo.: 04-00894	1
45 45 30 30 30	2 E 35 (2 × 12.5 mm fermacell® fibre gypsum boards + 20 mm mineral wool) on 2 × 30 mm fermacell™ honeycomb insulating system	105	50.2 (+0 +3)	66.9 (-3 -10 -8 -20]	TrNo.: 04-00892	1
45	2 E 35 (2 × 12.5 mm fermacell [®] fibre gypsum boards + 20 mm mineral wool) on 30 mm fermacell™ honeycomb insulating system	75	51.8 (+1 +4)	64.2 [-4]-11 -9]-20]	TrNo.: 04-00891	1
25 20 20 30	2 E 22 (2 × 12.5 mm fermacell [®] fibre gypsum boards) on 20 mm wood fibre Steico Therm sd on 30 mm fermacell [™] honeycomb insulating system	75	53.6 [+1 +3]	64.1 -4 -11 -9 -20]	TrNo.: 04-00893	1

Further sound insulation information can be found in section 4 Sound insulation.

CLT ceiling

System drawing Construction		Constr.	Sound insulation		Verification	Area of
		height	Impact noise L _{n, w}	Airborne sound ${\rm R}_{\rm w}$		application
		(Floor)	$(C_{1,100-2500} C_{1,50-2500})$	(C ₁₀₀₋₃₁₅₀ C _{t r,100-3150}		
				C _{50-3 150} C _{t r,50-2 500})		
		mm	dB	dB		
45 30 30 Brettsperr- holzdecke 27 125 125	2 E 35 [2 × 12.5 mm fermacell® fibre gypsum boards + 20 mm mineral wool] on 2 × 30 mm fermacell™ honeycomb insulating system with 148 mm CLT with 27 mm sprung track + mineral wool on 3 × 12.5 mm fermacell® fibre gypsum boards	105	38.7 [+2 +21]	75.8 [-7] -16 -22 -35]	TrNo.: 04-00898	1
45 30 30 Brettsperr- holzdecke 27 27 25	2 E 35 (2 × 12.5 mm fermacell [®] fibre gypsum boards + 20 mm mineral wool) on 2 × 30 mm fermacell [™] honeycomb insulating system with 148 mm CLT with 27 mm sprung track + mineral wool on 2 × 12.5 mm fermacell [®] fibre gypsum boards	105	41.3 (+2 +18)	74.2 (-9 -18 -21 -34)	TrNo.: 04-00897	1
45 45 30 30 Brettsperr- holzdecke 27 125	2 E 35 (2 × 12.5 mm fermacell® fibre gypsum boards + 20 mm mineral wool) on 2 × 30 mm fermacell™ honeycomb insulating system with 148 mm CLT with 27 mm sprung track + mineral wool on 1 × 12.5 mm fermacell® fibre gypsum board	105	50.0 (+4 +10)*	74.2 [-9 -18 -21 -34]*	TrNo.: 04-00896	1

2. Working

2.1 Storage/Transport/Building site

fermacell[®] fibre gypsum boards as well as fermacell[®] Powerpanel H₂O boards are proven, efficient and economical products for timber construction. Like all building materials, they react to changes in material temperature and moisture with changes in size and shape. This can affect the quality and durability of the materials and the structures that are built from them. Errors during transport and storage can also result in damage. Compliance with the conditions defined here for processing and installation is therefore mandatory.

Storage

Boards and equipment must be pro-	Gypsum
tected from the effects of moisture, and	fibre
especially from rain	
Gypsum products must always be stored	

- dry To avoid deformation and breakage, these boards must be stored flat, e.g. on dry pallets or on dry wooden supports approx. 35 cm apart
- Improper storage (e.g. set down on edge, exposure to moisture) results in deformation that impair proper installation
- Boards that have become damp for a short time should only be used after they have dried out completely (leave to dry on a flat surface)

Transport of boards

- · Wear gloves and suitable protective equipment
- Boards can be transported horizontally by pallet trucks or other board transport trolleys (pallet trucks that lift pallets from the front; can be provided for larger constructions sites by James Hardie after prior arrangement)
- Always carry individual boards vertically, use board lifters/carriers if possible
- Large format boards should be moved with vacuum lifting devices
- · Arrange return of wooden pallets with specialised dealer

			10 mm	12.5 mm	15 mm	18 mm
Gypsum fibre	One-man board	1 500 ×1 000 mm	0×1000 mm 1320 kg		1 340 kg	1 285 kg
	Large format	2000×1250mm	1 760 kg	1775 kg	1 785 kg	1715 kg
	Large format	2500×1250mm	2 200 kg	2 2 2 0 kg	2 230 kg	2145 kg
	Large format	2540×1250mm	-	2 2 2 5 kg	2 265 kg	2 180 kg
	Large format	2650×1250mm	-	2007 kg	-	-
	Large format	2750×1250mm	-	2040 kg	2 155 kg	1 855 kg
	Large format	3000×1250 mm	-	2 2 2 5 kg	2 350 kg	2020 kg
Power-	Small format	1500×1000 mm	-	-	745 kg	-
panel	Large format	2600×1250 mm	-	-	1 460 kg	-
HD	Large format	3000×1250 mm	-	-	1 685 kg	-

The weights are approx. values

Refer to the order confirmation for the exact pallet weights

Observe the load-bearing capacity of the ceilings when storing and transporting boards in the building!

EURBAN/Batzbergstrasse/CH

Building site conditions

Building climate conditions

Observe the climatic boundary conditions for use (e.g. EN 1995-1-1;

Section 2.3.1.3) during working, transport, installation and the construction phase. fermacell® fibre gypsum boards may only be installed at a relative humidity of <80%. The boards must have acclimatised to the ambient climate before installation. Sufficient ventilation must be ensured inside buildings even after installation work has been completed. The elements must be adequately protected from the weather. For larger construction projects, weather protection should also be specified for the construction site.

Wet plasters/screeds

These should be put in place and be dry before the fermacell[™] systems are installed – especially before the fermacell[™] jointfiller joints are filled.

Hot-rolled/poured asphalt

This must be placed before the filler is applied, as the joints may crack due to heat/ humidity stresses.

Gas burner heating

During application, damage may occur due to condensation. This is particularly true for cold interior areas with poor ventilation. Avoid rapid, abrupt heating, as this can cause thermal shock.

fermacell™ glue joint

· Room temperature: > + 5 °C

 Adhesive temperature: ≥ + 10 °C
 After bonding, there may be no significant change in these climatic conditions for at least 12 hours. Lower temperatures and relative humidity extend the curing times.

Frost during transport and storage does not damage the fermacell™ Jointstik adhesive after curing.

fermacell™ filler joint fermacell™ TB Tapered Edge joint

- Relative humidity of: 70 %
- Room temperature: > +5°C (corresponds to a resulting residual

panel moisture content of < 1.3%) Filling may be carried out after the wall and ceiling elements have been installed. Filling work on directly sheathed ceiling elements should only be carried out once the imposed load (e.g. floor screed/floor structures) has been applied.

Fine filling and finishing

The working conditions described above apply to the fine filling work.

Transport of prefabricated elements in production and to the building site

- Transport and store wall elements
 upright
- Back and secure protruding boards with so-called "transport battens"
- The glue joint of with the fermacell[™] joint adhesive or greenline joint adhesive must be cured before the element is transported (curing time at ≥ + 15 °C and ≥ 50 % relative humidity: approx. 18–36 hours)
- Then depending on the surface requirements – the joint area and the countersunk fixings are filled in with the fermacell™ joint filler, fine filler or gypsum surface filler

Removing the excess adhesive with fermacell™ scraper

fermacell™ glue joint

The adhesive is hardened after approx. 18 to 36 hours, depending on the room temperature. Do not move prefabricated elements during the critical setting time of the adhesive (4 to 12 hours) after the adhesive has been applied! Afterwards, the excess adhesive is removed completely with the fermacell[™] adhesive remover (or spatula, chisel). You will find further information in Section 2.2 on page 22.

Further information

online at www.gips.de in the manual:Data sheet 1: Building site conditions

Working 2.2 Jointing options

Jointing options for fastening of fermacell® fibre gypsum boards on CLT

Joints (surface)

fermacell[®] fibre gypsum boards can be fixed directly on cross-laminated timber surfaces. A joint offset of > 200 mm must be maintained to element joints in the surface. Horizontal joints should be avoided wherever possible. If there is no alternative to horizontal cross joints, they must be arranged with an offset of at least > 200 mm.

The following solutions are used as jointing options for installing fermacell® fibre gypsum boards, depending on the subsequent use. We recommend the adhesive jointing technique for timber construction. For two-layer lining cladding, the joint details must be applied as follows:

- 1. Layer of fermacell[®] gypsum fibreboard joint tightly butted (joint width < 1 mm)
- 2. Layer of fermacell[®] gypsum fibreboard joint as for single-layer sheathing (see images to the right)
- Joint offset min: ≥200 mm

Corner Joints

There are various design options for the joint design in internal/external corners.

It is important that corner designs do not result in three-flank adhesion and that there is a separation so that only two flanks provide the joint design.

Ceilings with Sylomer supports (acoustic isolation) should not have a firm filling (on release paper) when connected to an exposed ceiling. Suitable expansion joint materials must be used here.

You will find further information in the section Element joint formation cross-laminated timber/ CLT on page 23.

Board joint tightly butted

Joint width ≤ 1 mm. No requirements towards surface design

fermacell™ adhesive joint

Joint width ≤1 mm. For exposed surfaces

Board joint tightly butted

No requirements regarding surface design. Joint area not visible in the application

fermacell™ filler joint

Filler joint on seperating tape

fermacell™ filler joint

Joint width ½×board thickness (± 3 mm). For exposed surfaces

fermacell[™] dry lining edge TB

Joint width ≤1 mm (tightly butted). For exposed surfaces

Board joint tightly butted with joint tape

Joint tape filled in (e.g. composite tapes)

fermacell[™] adhesive joint

Joint width ≤1 mm. For exposed surfaces

In chapter 2.5 Jointing technique

Element joint formation cross-laminated timber/CLT

Cross-laminated timber elements can be produced in large dimensions, allowing heights of 3 metres and lengths of up to 20 metres. Owing to logistics and construction site conditions, smaller formats are produced for transport, resulting in element joints in the CLT.

When arranging element joints in CLT, various conditions must be taken into account when lining with fermacell® fibre gypsum boards. The element joints must be joined together in a complete section so no additional forces may act on the fermacell® fibre gypsum boards. No fermacell® board joint should be placed in the area of the element joints.

 Joint offset of the fermacell[®] joint to the cross-laminated timber element joint > 200 mm

CLT elements can be joined in various ways. If it is intended to apply subsequent lining, the following element joint designs will be used, which have been proven to be suitable for fire protection in wall constructions lined with fermacell®:

- · Butt joint connection
- Step joint connection
 If a filler joint is arranged in the area of the element joint – as described above
 the joint must be reinforced with glass fibre tape

To ensure airtight execution of the element joint, sealing tapes are usually inserted in the area of the element joints. Correct jointing of the elements must be carried out using suitable fasteners. Ensure the selection and dimensioning of the fasteners and the overall components must carried out in accordance with the structural conditions and requirements.

CLT element joint – butt joint connection

CLT element joint - step joint connection

Expansion/movement joints

Expansion/movement joints (continuous separation of the construction) are required in fermacell[™] constructions where movement joints are also present in the shell of the building.

Separating the lining

Because of the different expansion and shrinkage behaviour of cross-laminated timber elements and fermacell[™] lining when the humidity changes, the lining must be separated as of defined lengths:

· Separation of lining = open board joint

The open board joint is not filled or bonded.

Ideally, separation should be carried out at non-visible points, e.g. behind a cross-wall connection. The maximum spacing for separating the sheathing can be found in the following table.

They must be adopted with the same movement options.

Maximum spacing between the separations of the sheathing in CLT constructions

fermacell™ jointing technique	CLT wall construction	CLT ceiling construction
Filler joint	8 m	8 m
Adhesive joint	10 m	8 m
Adhesive joint for fastening board in board (face side)	12 m	10 m

Switzerland – CH

EURBAN/Batzbergstrasse/CH

Working 2.3 Fixing

fermacell® fibre gypsum boards can be fixed to CLT using the following fixings.

- Staples
- Nails
- fermacell[™] Drywall screws

Staples are the preferred fixing method for use in conjunction with CLT elements.

When fixing, the distance of the fixing to the edge of the board must be ≥ 10 mm.

All fixings must be countersunk into the fermacell[®] fibre gypsum boards to a depth of approx. 1–2 mm. If the surface is to be finished, the fixings must be filled with fermacell[™] joint filler or fine filler. If the surface is not to be finished (e.g. non-visible surface, first layer in two-layer constructions), the fixings do not need to be filled.

All fixings must be adequately protected against corrosion.

For two- or multi-layer constructions for walls or ceilings, the outer board layer can be stapled or screwed to the lower board without affecting the construction. The joint offset must be ≥ 200 mm. The row spacing of the fixings in the wall area is < 400 mm.

For fixing fermacell® fibre gypsum boards (2nd layer) to the underlying layer of fermacell® gypsum fibre (1st layer) screws or specific diverging staples can be used. The length of the staples should be 2–3 mm shorter than the sum of the two board thicknesses.

For fire protection requirements, refer to the relevant verification documents for the fixings/fixing spacing. ≥ 10 mm Ir

Spacing of fasteners to edge

Countersink clamps 1-2 mm

Fastening board in board

For factory prefabricated elements

If board to board fixing is used for multi-layer factory prefabricated components with a total lining thickness > 30 mm, additional fastenings (e.g. glue line between the boards at a distance of 400 mm) must be used.

1 layer – fermacell[®] fibre gypsum boards* on cross-laminated timber (CLT)

Cross-laminated timber – wall

	Staples (gal d≥1.5mm, I	vanized and re back width ≥10	sin-coated) mm	fermacell™ drywall screws d = 3.9 mm			
	Length [mm]	Spacing [mm]	Row spacing [mm]	Consump- tion Pce./m²	Length [mm]	Spacing [mm]	Row spacing [mm]
CLT 1st layer – 10 mm fermacell® fibre gypsum board	≥ 30	200	500	32	30	250	500
CLT 1st layer – 12.5 mm fermacell® fibre gypsum board	≥ 35	200	625	24	30	250	625
CLT 1st layer – 15 mm fermacell® fibre gypsum board	≥ 45	200	625	24	40	250	625
CLT 1st layer – 18 mm fermacell® fibre gypsum board	≥ 45	200	625	24	50	250	625

Cross-laminated timber – ceiling

	Staples (galvanized and resin-coated) d≥1.5mm, back width≥10mm				fermacell™ d = 3.9 mm	nacell™ drywall screws 9 mm		
	Length [mm]	Spacing [mm]	Row spacing [mm]	Consump- tion Pce./m²	Length [mm]	Spacing [mm]	Row spacing [mm]	
CLT 1st layer – 10mm fermacell® fibre gypsum board	≥ 30	150	420	30	30	200	420	
CLT 1st layer – 12.5 mm fermacell® fibre gypsum board	≥ 35	150	500	25	30	200	500	
CLT 1st layer – 15 mm fermacell® fibre gypsum board	≥ 45	150	550	21	40	200	550	
CLT 1st layer – 18mm fermacell® fibre gypsum board	≥ 45	150	625	19	50	200	625	

* fermacell® Firepanel A1

2 layers – fermacell® fibre gypsum boards* on cross-laminated timber (CLT)

Cross-laminated timber – wall

	Staples (galvanized and resin-coated) d≥1.5 mm, back width ≥10 mm			fermacell™ drywall screws d=3.9 mm			
	Length [mm]	Spacing [mm]	Row spacing [mm]	Consump- tion Pce./m²	Length [mm]	Spacing [mm]	Row spacing [mm]
CLT 1st layer – 12.5 mm fermacell® fibre gypsum board	≥ 35	400	625	12	30	400	625
CLT 2nd layer – 12.5 mm fermacell® fibre gypsum board	≥ 50	200	625	24	40	250	625
CLT 1st layer – 15 mm fermacell® fibre gypsum board	≥ 45	400	625	12	40	400	625
CLT 2nd layer – 15 mm fermacell® fibre gypsum board	≥ 60	200	625	24	55	250	625
CLT 1st layer – 15 mm or 18 mm fermacell® fibre gypsum board	≥ 45	400	625	12	40	400	625
CLT 2nd layer – 18 mm fermacell® fibre gypsum board	≥ 65	200	625	24	55	250	625

* fermacell® Firepanel A1

3 layers – fermacell® fibre gypsum boards* on cross-laminated timber (CLT)

Cross-laminated timber – wall

	Staples (galvanized and resin-coated) d≥1.5 mm, back width ≥10 mm				fermacell™ drywall screws d=3.9 mm		
	Length [mm]	Spacing [mm]	Row spacing [mm]	Consump- tion Pce./m²	Length [mm]	Spacing [mm]	Row spacing [mm]
CLT 1st layer – 12.5 mm fermacell® fibre gypsum board	≥35	400	625	12	30	400	625
CLT 2nd layer – 12.5mm fermacell® fibre gypsum board	≥ 50	400	625	12	40	400	625
CLT 3rd layer – 12.5mm fermacell® fibre gypsum board	≥65	200	625	24	55	250	625

* fermacell® Firepanel A1

Fastening board in board – fermacell® fibre gypsum boards* on cross-laminated timber (CLT)

Cross-laminated timber – wall (fixing of the 1st board layer as for the 1st layer – fermacell® fibre gypsum boards on cross-laminated timber (CLT)

	Diverging Staples (galvanized and resin-coated) d≥1.5mm, back spacing≥400mm			fermacell™ dry d=3.9 mm	wall screws	
	Length [mm]	Spacing [mm]	Consumption Pce./m ²	Length [mm]	Spacing [mm]	Consumption Pce./m²
10 mm fermacell® fibre gypsum board on 10 or 12.5 mm fermacell® fibre gypsum board	18–19	150	43	30	250	26
12.5 mm fermacell® fibre gypsum board on 12.5 or 15 mm fermacell® fibre gypsum board	21-22	150	43	30	250	26
15mm fermacell® fibre gypsum board on 15mm fermacell® fibre gypsum board	25-28	150	43	30	250	26
18 mm fermacell® fibre gypsum board on 15 mm fermacell® fibre gypsum board	28-30	150	43	40	250	26
18 mm fermacell® fibre gypsum board on 18 mm fermacell® fibre gypsum board	35	150	43	40	250	26

* fermacell® Firepanel A1

For fire protection requirements, observe the fasteners and fastener spacings of the corresponding fire protection certificates.

¹ HTMA 41 fermacell™ cross-laminated timber wall (F120-B/REI 120)

3. Fire protection

3.1 Fire protection with cross-laminated timber/CLT

The topics covered in this section on design options for building with cross-laminated timber and solutions with James Hardie Europe products are intended to provide a common basis for discussion and exchange for designers, planners, installers and builders involved in timber construction. They demonstrate the wide range of possible solutions in timber construction and provide examples for defining project-related solutions can be achieved:

- Fire protection cross-laminated
 timber
- Wall constructions
 - Ceiling constructions
- Performance and verifications
- Eirostopping colution for
- Firestopping solution for CLT
- Details and junctions

The cross-laminated timber construction method has numerous possible solutions for the building requirements of the future. This often involves topics such as:

- · Consolidation in urban construction
- · Multi-storey buildings
- · Gained living space
- Reduced construction times
- Static/loaded solutions
- Fire protection

Building with cross-laminated timber allows construction projects to be built quickly thanks to the high level of prefabrication options, including modular construction. At first glance, cross-laminated timber construction has advantages in terms of structural fire protection in multi-storey buildings, such as avoiding the risk of fire spreading in cavities and high load transfer with a slim cross-section. Nevertheless, a holistic view should not be disregarded. Unprotected wood surfaces increase the fire load and must therefore be well planned with regard to building code requirements. It is therefore all the more important to use the correct individual characteristics and terms in fire protection, such as building material class, fire development, fire spread and fire resistance, and to define the possibilities with regard to these requirements. A high level of care is therefore required at the planning stage in order to fully utilise the potential of CLT for multi-storey buildings. James Hardie Europe has in recent years developed extensive fire protection solutions for building with CLT. These are construction solutions for the protection of CLT. fermacell® fibre gypsum boards simultaneously take on several functions in combination with the cross-laminated timber elements.

The aim is to increase the decorative possibilities of surface design and the proportion of non-combustible surfaces. This is essentially about optimising the fire protection of the wall elements with a high load transfer and also realising slim wall structures. More living and usable space can therefore be made available in the face of increasing urbanisation.

Further information

online at www.informationsdienst-holz.de Guidance details for component connections in building classes 4 and 5

James Hardie Europe will provide support as a partner in all phases of the project.

Options for structural fire protection solutions with different requirements:

- Single-layer lined constructions from F30-B to F120-B (REI 30 to REI 120)
- · Firewalls (REI 90-M, REI 120-M)
- Single-sided and double-sided wall systems F30-B to F120-B (REI 30 to REI 120)
- Streamlined fire protection solutions with permissible loads of up to 200 kN/m
- Element joint designs
- \cdot $\$ Integration of steel components
- · Connection joint solutions
- · Implementations of firestopping systems

England – UK

EURBAN/Newington Butts/UK

. Fire protection

3.2 fermacell[®] fibre gypsum boards – fire protection lining

In terms of fire protection and load-bearing capacity, cross-laminated timber offers many possibilities for multi-storey buildings. James Hardie Europe has carried out extensive component/fire tests to optimise building with cross-laminated timber in order to optimise the performance of solid timber construction and to realise slimmer constructions integrating high load transfer. This achieves various protection goals that significantly affect the property/project business.

As a building material, wood is also known to be combustible and therefore differs in many ways from other building materials in multi-storey buildings. Unlike other building materials such as steel, timber behaves more favourably in terms of load-bearing behaviour. Wood itself is a poor conductor of heat and the effect of the fire (corresponding heat energy on the surface) results in pyrolysis and the formation of a charred layer. This resulting charred layer has a decreasing density and provides better thermal insulation, which in turn protects the area of the wood that is not exposed to high temperatures. However, wood as a building material does represent an additional fire load at the exposed surface and normally usable wood cross-sections cannot be considered as a load-bearing layer in the event of fire. In many countries, the additional fire load due to exposed timber surfaces is taken into account for high-rise buildings and complex timber constructions and a so-called "proof of self-extinguishing" is required.

Protecting the surface of the cross-laminated timber with fermacell® fibre gypsum boards therefore offers several advantages for the supporting structure at the same time.

fermacell on CLT

- Non-combustible surface
 → Reduction of visible fire load in the room
- Protection of the supporting structure
- before burning combustion \rightarrow No additional
- fire contribution

 Optimisation of the timber
- Optimisation of the timbe cross-sections
 → Streamlined
- wall constructions
- \cdot High loads can be realised
- → Due to reduced or no burning combustion, higher loads can be taken into account

Requirements for fire protection linings

Fire protection linings can be used for different performance characteristics depending on the definition of the requirements. Essentially, the objective is to protect the supporting structure (wood) from ignition, i.e. to delay the start of the burning combustion by using fire protection lining.

The respective country-related (national/ European) or project-related requirements must be defined in advance of project planning.

Protective action of fire protection lining (EN 1995-1-2)

As described above, fire protection lining contributes positively to the behaviour of building components in the event of fire. Eurocode 5 (EN 1995-1-2), which takes into account the protective action of fire protection lining in the design, also gives further guidance. Two key features are considered here. On the one hand, the components are optimised so as to prevent the involvement of the timber components in the fire $[t_{ch}]$. In EN 1995-1-2, the limit temperature is standardised at 300 °C. In this context, this is referred to as the burning rate limit. I.e. the layer between the charred layer and the unburnt cross-section.

Limit temperature: ≤ 300 °C (t₃₀₀)

On the other hand, the properties of the protective lining: At what point does the cladding begin to fail/fall off [t,].

Encapsulation (England/STA guide)

England (UK) has specific regulations for building with CLT. Buildings with a height of > 18 m must take into account the CLT as an additional fire load. There are two options that can be considered in this context: 1. complete encapsulation of the timber construction and,

2. the self-extinguishing property, which can be included in the holistic view for the overall project.

The criteria of encapsulation and the onset of charring is an important parameter. Complete encapsulation is therefore, one way of verifying fire protection requirements. As opposed to the protective effect of the cladding (EN 1995-1-2), the requirements for the permissible limit temperatures in the UK between the cladding and CLT are defined as ≤ 200 °C.

Limit temperature: ≤ 200 °C (t₂₀₀)

Further information

online at www.fermacell.de:

• In chapter 1.10 Cross-laminated timber of the document fermacell[®] and Hardie[®] constructions

K₂60 component test: two-layer fermacell® – after 60 minutes)

 $\rm K_260$ component test: two-layer fermacell^ $\ensuremath{^\circ}$ – Inspection of the base support (indicator board)

Fire protection cladding (EN 13501-2)

EN 13501-2 specifies the fire protection function K, which defines a fire protection cladding that protects an underlying layer from ignition, charring or other damage for a defined period of time. The test procedure is a fire test for a ceiling component (EN 14135) which defines classification periods of 10 minutes (K10), 30 minutes (K30) and 60 minutes (K60).

Depending on the base support located behind the fire protection cladding, a substrate (indicator plate) of classification K₁ or K₂ is assigned, whereby only classification K₁ is provided for K₁10. A wood-based panel (ρ 680 kg/m³ ± 50 kg/m³) serves as a base support (indicator panel) for use in multi-storey timber construction and the classifications K₂10, K₂30 and K₂60 can be assigned.

At the time of classification, the following protection targets must be met:

- No charring, ignition, damage to the base support (indicator panel)
- ∆T_{average value}: ≤ 250 °C
- ∆T_{maximum value}: ≤ 270 °C

3. Fire protection

3.3 Joint design and fire protection Lining – project solution

James Hardie Europe in recent years has carried out extensive component tests with cross-laminated timber components in order to further develop solutions for CLT buildings. This involved the load-bearing capacity and optimisation of the component performance as well as the properties with regard to temperature behaviour.

The design of the joints in the area of the fire protection lining is a special feature for planning and application. Numerous investigations have also been conducted recently, which have expanded the solutions for CLT.

To demonstrate the possibilities, engineering firm IGNIS - Fire Design Consulting GmbH (based in Zurich/CH and Munich/D) has analysed and assessed various joint designs at the surface and also in the corner areas based on national/international studies and research activities.

The following performance features have been taken into account: Classification period (minutes) • 30, 60, 90

Temperature criterion/

- Limit temperature (°C)
- t₃₀₀, t₂₀₀
- Joint locations
- Surface joints, inside corners

This analysis/assessment "Analysis of fire safe joint details for cross-laminated timber elements fire protected with fermacell[®] fibre gypsum boards" can be applied to construction projects within the framework of fire protection projects and must be clarified in coordination with the respective interfaces involved.

The following configurations can be shown as fire protection linings for sheathing on cross-laminated timber elements with regard to temperature behaviour.

Limit temperature	> 30 minutes	> 90 minutes
t ₂₀₀	18 mm fermacell®	2×18mm fermacell®
t ₃₀₀	18 mm fermacell®	2×18mm fermacell®

Corner designs

Depending on the structural conditions and the respective construction processes in conjunction with the amount of prefabrication, different options for corners may be required. However, the junction interfaces are an essential feature for the overall building structure and the required protection performances. Various corner designs have therefore been assessed in the fire protection assessment with regard to their suitability for the required protection.

Single-layer lining/ Corner design

The corner design for single-layer lining is based on the corner designs already described in section 2.2. There is also a further solution that can be used if the joint widths are larger due to the construction site/production installation process. Board joint tightly butted

Joint width ≤1 mm No requirements regarding surface design/finishing. Joints in non visible locaitons

Corner joint with Aestuver™ FB FPM mastic

Intumescent joint material Joint widths of 4–35 mm

fermacell™ filler joint

Filler joint on open joints - width 1/2 board width +3 mm

Multi-layer lining/ Corner design

The corner can be designed in a variety of ways that are assessed in terms of fire protection. Numerous national/international research activities, such as "fire resistance testing of encapsulation to CLT walls and ceiling elements" (OFR FIRE+RISK CONSULTANTS), in which corner designs were evaluated or tested as part of trials, were also included in the assessment.

Corner joint tightly butted

Double offset

Corner joint tightly butted

Corner joint tightly butted

Single offset

Corner joint

Tight joint Joint width ≤1mm

Corner joint – Filler joint

Two-layer filler joint on seperating tape

rr-P ser-Platte

Intumescent joint material Joint widths of 4–35mm

Corner joint – Filler joint

Single-layer filler joint on seperating tape

England – UK

EURBAN/Press House/UK

3. Fire protection

3.4 Steel components/steel beam and crosslaminated timber ceilings – project solution

The optimum combination of materials - to maximise their respective performance is a high priority in modern construction. When there are large span widths or special static/loaded framework conditions, a combination of timber and steel is often used as a solution for ceiling structures. In particular, Multi-storey buildings, require solutions that can combine materials to fulfil very different material properties in terms of fire protection. In this case, the engineering firm IGNIS - Fire Design Consulting GmbH (based in Zurich/CH and Munich/D) has carried out tests based on the findings from national/international research projects in order to develop possible solutions for the application of material combinations of steel beams/ cross-laminated timber ceiling. Finally, a ceiling structure was examined as an example in a large-scale fire test under load at the IBS Linz. As part of the component test, cross-laminated timber ceiling elements laid on steel beam components were examined with regard to the behaviour of the steel cross-laminated timber support in the event of fire.

The steel flanges were clad with 2×18 mm fermacell® fibre gypsum boards, so that the ceiling construction was protected for more than 90 minutes. Thanks to the extensive acquisition of integrated measurement data, customised solutions can be developed and evaluated on a project-specific basis, enabling safe construction using a combination of cross-laminated timber and steel components. IGNIS – Fire Design Consulting is available for advice on the development of support details for compliance with project-specific protection targets in the event of fire.

IGNIS - Fire test cross-laminated timber ceiling/steel girder (IBS Linz)

IGNIS - Fire test cross-laminated timber ceiling/steel beam (IBS Linz)

Project solution: elliottwood – 38 Berkeley Square/London – UK

Project solution: Encapsulation ceiling component – Cross-laminated timber/steel beam

Project solution: Encapsulation ceiling component with raised floor – cross-laminated timber/steel beam

Hotel Jo & Joe/Gentilly (Paris)/F

3. Fire protection

3.5 Bulkhead systems/implementations – project solution

Aestuver™ FireShield

The question of how to implement installations through separating components (ceiling/wall) often arises, particularly in multi-storey buildings or when separating building units. James Hardie Europe has recently carried out extensive development work in this area and has developed a new system for ceiling installations, which has an ETA (ETA-22/0248) and can be used on a project-specific basis depending on the respective national requirements.

When planning projects, Aestuver™ FireShield can be taken into account at an early stage, as the opening dimensions can be specified at the factory for possible prefabrication on a project-specific basis.

The Aestuver™ FireShield offers five key advantages for planning, implementation and utilisation:

Safety at work

- + Fall protection
- + Penetration-resistant ceiling closure
- + Trip-free cover
- + Scaffold-free fire protection installation from above

Waterproof

- + Waterproof bare floor/
- weatherproof building site
- + Dry installation shafts

Economical

- + Surveillance-free fall arrest system
- + No additional protective equipment
- + No work on formwork
- + No disposal of formwork material

Time efficient

- + Prefabricated formwork element
- + Can be planned precisely in the preliminary planning phase for joining the CLT elements
- + Planning security
- + Scaffold-free installation from above

Fire protection

- + Safety rights from the building shell and finishing stages
- + EN-tested/EN-classified/ CE-marked
- + Pipes (combustible/non-combustible)
- + Cables and cable lines
- + Ventilation systems

Maximum ceiling opening in cross-laminated timber*

Aestuver™ FireShield composite board	Min. ceiling thickness	Max. width	Max. length
54 mm	140 mm	1250 mm	2600 mm

The length, width and thickness of the Aestuver[™] FireShield are customised ex works to the recess dimensions.

 $54\,\mathrm{mm}$ thick Aestuver^ FireShield are usually one-piece.

* On customer request, rounded corners can also be produced to match the working tools of the joinery systems. This allows for coordination with junctions of the cross-laminated timber ceilings and assembly of the Aestuver™ FireShield during the planning stage, ensuring smooth operation on the construction site. This provides planning security for the execution, both during construction and during in use. The simple design allows for easy retrofitting during subsequent use. The operator benefits from the fact that the top of the ceiling can easily be retrofitted.

Aestuver™ FireShield – ceiling damming/cross-laminated timber ceiling (project solution)

Delivery: Aestuver™ FireShield elements are delivered by storey or in stages

Aestuver™ FireShield can be used on a property-specific basis as part of fire protection planning projects and must be clarified in consultation with the respective interfaces involved.

Sound insulation

4.1 Sound insulation with cross-laminated timber

The following information on sound insulation is intended to provide designers, processors and building owners involved in timber construction with a common basis for discussion and design:

- Typical acoustic parameters
 Requirements and verifications
- Constructions of lined ceiling
- Prediction method for Ceilings & wall Constructions
- Installations and fixings
- Building separating walls

Typical acoustic parameters

The sound insulation of building components is measured in accordance with EN ISO 10140. As a rule, 16 measured values of one-third octave bands are available. To simplify working with these values, an evaluation procedure was introduced in accordance with EN ISO 717, which summarises the 16 measured values into a single figure. This single figure reference will then be used in the following. Dimensions for airborne and impact sound insulation requirements in accordance with DIN 4109, edition 2018:

- **R'**_w: weighted sound reduction index in dB including flanking sound transmission (installed condition)
- R_w: weighted sound reduction index in dB without flanking sound transmission as a laboratory test of the sample component itself.
- L´_{n,w}: weighted standardised impact sound level in dB, taking into account all secondary sound paths
- L_{n,w}: weighted standardised impact sound level in dB without taking into account the secondary sound paths determined in the test rig – corresponds to the calculated value for the basic construction

Parameters will also be important when it comes to the verification of components:

D_{n,f,w}: weighted standard flanking sound level difference in dB including flanking transmission

The following spectrum correction values serve to better compare the single-number data obtained by from the evaluation (EN ISO 717) of a sound measurement with the subjective human perception. These are not standardised in Germany (DIN 4109) as requirements, but are used in other European countries where stated.

- C: Correction factor value for sounds that can occur within a building (airborne sound insulation)
- C_{tr}: Correction factor value for traffic noise, usually from outside (airborne sound insulation)

C_i: Correction factor value for ceilings, which evaluates level peaks in the low-frequency range (impact sound insulation)

The single-number values of the sound reduction index are determined from the level curves of the one-third octave bands between the frequencies of 100 to 3 150 Hz. Increased user comfort requirements, increased noise levels outdoors and the lowering of indoor noise levels, especially in living rooms, have shown that a modern assessment of the situation using the previously established single-number method from 100 Hz is not always sufficient. In line with current technology technology, the frequency range weighted by a single number was extended down to 50 Hz and supplemented by an additional value. Corresponding indices, which are attached to the letter C, further define the weighted area.

Further information

online at www.fermacell.de:

On page 70 of the document Planning and working fermacell[®] and Hardie[®] in timber construction

Example:

 $\mathbf{R}_{w} + \mathbf{C}_{50-2500} = 68 \, \text{dB} - 20 \, \text{dB}$

- **R**_w: in this case stands for the single-number sound reduction index
- C factor: stands for the correction (-20 dB) if the sound insulation of the construction is to be weighted from as low as 50 Hz

Further sound insulation information can be found in section 1.3 fermacell[™] construction solutions - wall and 1.4 fermacell[™] construction solutions - ceiling.

Requirements and verifications

Requirements

In Germany, the definition of sound insulation requirements for a building project is regulated by the building authorities in the MVV TB (model administrative regulation for technical building regulations). In this case,

it refers to

DIN 4109-1:2018-01. However, the different implementation status of the MVV TB in the respective federal states must always be taken into account. Minimum requirements, which are binding under building law, are specified here for the respective areas. Under civil law, however, a different construction method is usually taken as a basis, which has either been clearly agreed in writing beforehand with regard to the expected level of sound insulation or must at least comply with the generally recognised rules of technology. Corresponding rulings in current case law, e.g. from the German Federal Court of Justice, must be observed.

German Federal Court of Justice rulings: · VII ZR 184/97 dated 14.05.1998 · VII ZR 54/7 dated 04.06.2009 With the introduction of DIN 4109-5:2020 in 2020, there is once again a DIN-based set of rules for increased requirements for sound insulation in building construction. It is the replacement for DIN 4109 Insert 2:1989-11. Regardless of the requirements of DIN 4109-1:2018-01 (minimum requirements) or DIN 4109-5:2020-08, the preferred sound insulation can also be agreed individually. The regulations VDI 4100 (2012 edition), DEGA recommendation 103 (2018 edition) or Informationsdienst Holz can provide support here: "Sound insulation in timber construction - basics and preliminary design" (2019 edition).

Further information

online at www.informationsdienst-holz.de Sound insulation in timber construction: Basics and preliminary dimensioning

Airborne and impact sound insulation to protect against sound transmission from an external living or working area

Components	Minimum requirements increased require- ments DIN 4109-1:2018-01 DIN 4109-5:2020-08		
	Airborne noise req. R´ _w dB	lmpact noise req. L´ _{n,} "dB	
Apartment blocks, office buildings and mixed-use buildings			
Apartment separating ceilings	≥54 57	≤50* 45	
Ceilings under bathrooms/WCs	≥54 57	≤53 47	
Apartment separating walls	≥53 56	-	
Hotels and accommodation			
Ceilings including ceilings under corridors	≥54 57	≤53 45	
Walls between overnight rooms, corridors and overnight rooms	≥47 52	-	
Ceilings under bathroom and WC without/with floor drainage	≥54 57	≤53 47	
Schools and similar institutions			
Ceilings between classrooms or similar rooms	≥ 55	≤ 53	
Walls between classrooms or similar rooms	≥47	-	

Following DIN 4109-1:2018-01 Tab. 1 to 6 and DIN 4109-5:2020-08 Tab. 1 to 4

* For new buildings with ceiling constructions, DIN 4109-33:2016-07, Sound insulation in buildings - Part 33: data for the mathematical verification of sound insulation (component catalogue) - timber, lightweight and dry construction, the requirement for L´_{n w} ≤53 dB

Airborne sound insulation to protect against sound transmission between detached houses - house partition walls

Components	Minimum requirements DIN 4109-1:2018-01	DIN 4109-5:2020-08
	Airborne noise req. R´ _w dB	Impact noise req. L´ _{n,} "dB
Single-family houses, terraced houses and semi-detached houses		
Building partition walls to common rooms located on the lowest floor (whether or not in contact with the ground) of a building	≥59 62	-
Building partition walls to habitable rooms under which at least one storey of the building is present (whether or not in contact with the ground)	≥62 67	
Following DIN 4109-1 01/18 Tab. 3		

Verification method for airborne sound directly lined CLT wall element

Cross-laminated timber elements are not dissimilar to classic solid construction elements in terms of their structural acoustic behaviour, which is why elements lined directly with fermacell[®] fibre gypsum boards can be calculated approximately using the following formula:

 $R_{w} = 25 \lg \times \frac{m'_{ges}}{m'_{0}} - 7 \lg)^{*}$

The formula may be used for components with a total thickness of 80 to 160 mm and a total weight of 35 to 160 kg/m². The formula represents the state of technology and is not secured by a standardised procedure under building law.

Verification method for airborne sound independent lining

In a further step, based on DIN 4109, Part 34, 2016 edition the calculation method for independent linings listed therein can be used. The weighted airborne sound improvement ΔR_w (applies to the resonance frequency f₀ between 30 and 160 Hz) is calculated as follows:

 $\Delta R_{w} = 74.4 - 20 lg \times f_{0} - 0.5 R_{w}$

The double wall resonance $f_{\scriptscriptstyle 0}$ is calculated as follows:

$$f_0 = \frac{1}{2\pi} \times \sqrt{s' \times \left(\frac{1}{m_1} + \frac{1}{m_2}\right)}$$

With:

- f_0 : Double wall resonance frequency in Hz
- m₁: Total mass of the base wall in kg/m²
- m₂: Total mass of the independent lining in kg/m²
- s': Spring rigidity of the layer between base wall and independent lining in MN/m³.

The following applies to free-standing independent linings:

$$s' = \frac{0.111 \text{ MPa} \times 10^6}{\text{d}[\text{m}]}$$

Calculation example:

	fermacell® fibre gypsum board	12.5 mm	R _w = 56 dB
	CW/UW profile	50 mm	$C_{100-3150} = -3 dB$
ILACA	Rock wool insulation	40 mm	$C_{tr 100-3150} = -9 dB$
	Air layer/cavity	10 mm	$C_{50-3150} = -5 dB$
	Cross-laminated timber	80 mm	$C_{tr 50-3150} = -15 dB$

Base wall:

 $R_w = 25 \lg \times \frac{m_{ges}^2}{m_0^2} - 7 (dB) = 25 \lg \times \frac{40 \lg}{m^2} - 7 (dB) = 33.0 dB$

Double wall resonance frequency f₀:

$$f_0 = \frac{1}{2\pi} \times \sqrt{s' \times \left(\frac{1}{m_1} + \frac{1}{m_2}\right)} = 160 \times \sqrt{\frac{0.111}{0.06} \times \left(\frac{1}{40} + \frac{1}{14.7}\right)} = 66.0 \text{ Hz}$$

Improvement measure:

$$\label{eq:alpha} \begin{split} \Delta R_w &= 74.4 - 20 \, lg \times f_0 - 0.5 \, R_w = 74.4 - 20 \, lg \times 66 \, Hz - 0.5 \times 33.0 \, dB = 21.5 \, dB \\ R_w &= 33.0 \, dB + 21.5 \, dB = 54.5 \, dB \end{split}$$

Measured according to Tr. No. 04-00489:

 $R_w = 56 dB$

Further sound insulation solutions

online at www.fermacell.de in the manual:
fermacell[®] and Hardie[®] constructions

Hotel Nautilus/Pesaro/I

4. Sound insulation

4.2 Examples of sound insulation values wall constructions/cross-laminated timber

System drawing	Description	R _w ¹⁾
	80 mm cross-laminated timber	$\begin{array}{l} 33dB \\ C_{100-3150} = -1dB \\ C_{tr.100-3150} = -3dB \\ C_{50-3150} = -1dB \\ C_{tr.50-3150} = -4dB \\ Tr \ No.: \ 04-00486 \end{array}$
	80mm cross-laminated timber 27mm Top Hat profile 20mm mineral fibre 18mm fermacell® fibre gypsum board	49 dB C ₁₀₀₋₃₁₅₀ = -2 dB C _{tr.100-3150} = -9 dB C ₅₀₋₃₁₅₀ = -3 dB C _{tr.50-3150} = -10 dB Tr No.: 04-00495
	18mm fermacell® fibre gypsum board 80mm cross-laminated timber 27mm Top Hat profile 20mm mineral fibre 18mm fermacell® fibre gypsum board	$\begin{array}{l} 55 dB \\ C_{100-3150} = -4 dB \\ C_{tr.100-3150} = -11 dB \\ C_{50-3150} = -5 dB \\ C_{tr.50-3150} = -13 dB \\ Tr No.: 04-00496 \end{array}$
	18 + 15 mm fermacell® fibre gypsum board 80 mm cross-laminated timber 27 mm Top Hat profile 20 mm mineral fibre 18 + 15 mm fermacell® fibre gypsum board	$\begin{array}{l} 62dB\\ C_{100-3150}=-3dB\\ C_{tr.100-3150}=-10dB\\ C_{50-3150}=-5dB\\ C_{tr.50-3150}=-15dB\\ Tr\ No.:\ 04-00497 \end{array}$
	80mm cross-laminated timber 10mm spacing 50mm CW profile 40mm mineral fibre 12.5mm fermacell® fibre gypsum board	$\begin{array}{l} 56 dB \\ C_{100-3150} = -3 dB \\ C_{tr.100-3150} = -9 dB \\ C_{50-3150} = -5 dB \\ C_{tr.50-3150} = -15 dB \\ Tr No.: 04-00489 \end{array}$
	80mm cross-laminated timber 10mm spacing 50mm CW profile 40mm mineral fibre 12.5 + 10mm fermacell® fibre gypsum board	61 dB C ₁₀₀₋₃₁₅₀ = -2 dB C _{tr.100-3150} = -9 dB C ₅₀₋₃₁₅₀ = -6 dB C _{tr.50-3150} = -18 dB Tr No.: 04-00490
	 12.5 mm fermacell® fibre gypsum board 50 mm CW profile 40 mm mineral fibre 10 mm spacing 80 mm cross-laminated timber 10 mm spacing 50 mm CW profile 40 mm mineral fibre 12.5 + 10 mm fermacell® fibre gypsum board 	71 dB C ₁₀₀₋₃₁₅₀ = -8 dB C _{tr.100-3150} = -16 dB C ₅₀₋₃₁₅₀ = -13 dB C _{tr.50-3150} = -26 dB Tr No.: 04-00492

👖 R_w: Calculated value of the weighted sound reduction index without sound transmission via flanking components in accordance with DIN 4109

Further sound insulation information can be found in section 1.3 fermacell™ construction solutions - wall and 1.4 fermacell[™] construction solutions - ceiling.

System drawing	Description	R _w ¹¹
	80mm cross-laminated timber 140mm Alu BWM 120mm mineral fibre 12.5mm fermacell® Powerpanel H ₂ 0 HD lightweight mortar	48 dB C ₁₀₀₋₃₁₅₀ = -5 dB C _{tr.100-3150} = -10 dB C ₅₀₋₃₁₅₀ = -5 dB C _{tr.50-3150} = -11 dB Tr No.: 04-00506
	10 + 12.5 mm fermacell® fibre gypsum board 50 mm CW profile 40 mm mineral fibre 10 mm spacing 80 mm cross-laminated timber 140 mm Alu BWM 120 mm mineral fibre 12.5 mm fermacell® Powerpanel H ₂ 0 HD lightweight mortar	65 dB C ₁₀₀₋₃₁₅₀ = -5 dB C _{tr.100-3150} = -11 dB C ₅₀₋₃₁₅₀ = -8 dB C _{tr.50-3150} = -19 dB Tr No.: 04-00507
	80 mm cross-laminated timber 200 mm Steicowall 200 mm Steicoflex Steico multi UDB 30/50 mm lathing 12.5 mm fermacell® Powerpanel H ₂ 0 HD lightweight mortar	43 dB C ₁₀₀₋₃₁₅₀ = -2 dB C _{tr.100-3150} = -7 dB C ₅₀₋₃₁₅₀ = -2 dB C _{tr.50-3150} = -7 dB Tr No.: 04-00506
	10 + 12.5 mm fermacell® fibre gypsum board 50 mm CW profile 40 mm mineral fibre 10 mm spacing 80 mm cross-laminated timber 200 mm Steicowall 200 mm Steicoflex Steico multi UDB 30/50 mm lathing 12.5 mm fermacell® Powerpanel H ₂ O HD lightweight mortar	65 dB C ₁₀₀₋₃₁₅₀ = -4 dB C _{tr.100-3150} = -10 dB C ₅₀₋₃₁₅₀ = -6 dB C _{tr.50-3150} = -16 dB Tr No.: 04-00505
	12.5mm fermacell® fibre gypsum board 80 mm cross-laminated timber 2×12.5mm fermacell® fibre gypsum board 40 mm mineral fibre 20 mm air layer 40 mm mineral fibre 2×15mm fermacell® fibre gypsum board 80 mm cross-laminated timber 12.5 mm fermacell® fibre gypsum board	$\begin{array}{l} 75\text{dB} \\ C_{100-3150} = -1\text{dB} \\ C_{tr.100-3150} = -6\text{dB} \\ C_{50-3150} = -3\text{dB} \\ C_{tr.50-3150} = -13\text{dB} \\ Tr\text{No}_{\cdot:}04009\text{6}3 \end{array}$

Connection to walls

Connection structure	Description of the inside of the flanking component	D _{n,f,w} ²⁾
	12.5mm fermacell® fibre gypsum board 27mm Top Hat profile 20mm mineral fibre 80mm cross-laminated timber	65 dB C ₁₀₀₋₃₁₅₀ = -2 dB C _{tr.100-3150} = -7 dB C ₅₀₋₃₁₅₀ = -3 dB C _{tr.50-3150} = -11 dB Tr No.: 04-00755

¹¹ R_w: Calculated value of the weighted sound reduction index without sound transmission via flanking components in accordance with DIN 4109
 ²¹ D_{n,tw}: Calculated value of the weighted longitudinal sound reduction index without sound transmission via the separating component

The specified values only apply apply in conjunction with the respective general building authority test certificate or the acoustic test report and their design specifications.

Sound insulation

4.3 Building separating walls

Building party walls in timber construction are generally used for the boundary development of properties. Due to the different building units, sound insulation requirements must be met in addition to the fire protection requirements. In timber construction, these building party walls are usually designed as a double stud wall system. This structure offers very good sound insulation values in the medium and high frequency range. There are good options for counteracting the noise in the lower frequency range, which is perceived by residents as booming or rumbling. Influence options (examples):

- Increased separating joint between
 building party walls
- Increase the number of lining layers on the room side
- Reduction of the substructure spacing for timber frame constructions

Among other things, such measures result in damping of the natural vibration behaviour of the linings and thus help improve sound insulation in the lower frequency range.

The extent to which these measures influence the airborne sound reduction index, particularly in the low-frequency range, is shown in the following comparison of superstructures measured in the laboratory with the corresponding curves:

System drawing	Colour code	Thickness	Weight	Sound insulation Airborne sound R _w (C _{t r,50-5000})	Type of Measurement	Source
		mm	kg/m²	dB		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		410		68(-9) dB = <b>59 dB</b>	Average value from four quasi flank-free construction site meas- urements	Holtz et.al.: Acoustic optimisation of timber construction, Stephanskirchen 2004
		370		71(-30)dB= <b>41dB</b>	Laboratory measure- ment	Holtz et.al.: Acoustic optimisation of timber construction, Stephanskirchen 2004
		370		66[-8] dB = <b>58 dB</b>	Laboratory measure- ment	Holtz et.al.: Acoustic optimisation of timber construction, Stephanskirchen 2004
		350	180	78(-12) dB = <b>65 dB</b>	Laboratory measure- ment	Laboratory measure- ment of James Hardie Europe GmbH am ift Rosenheim, 2017



#### Wall representation



Building party wall - low-frequency application (example)

- 12.5 mm fermacell® fibre gypsum board
- >80 mm solid wood wall
- 2 × 15 mm fermacell® fibre gypsum board
- 100 mm air space (with 2 × 40 mm insulation)
- 2 × 15 mm fermacell® fibre gypsum board
- → 80 mm solid wood wall
- 12.5 mm fermacell® fibre gypsum board

 $R_{w}(C;C_{tr})$  in dB = 78 (-1; -6)

 $\begin{array}{l} C_{100-3\,150}=-1\,\,dB\\ C_{tr.100-3\,150}=-6\,\,dB\\ C_{50-3\,150}=-3\,\,dB\\ C_{tr.50-3\,150}=-12\,\,dB\\ Tr\,\,No.:\,04-00502 \end{array}$ 

4.

# Notes

The latest version of this brochure applies, which you can download from our website. Subject to technical modifications. Should you require additional information, pleasecontact our customer service. Last update 03/2024

© 2024 James Hardie Europe GmbH. ™ and [®] are registered trademarks of James Hardie Technology Limited and James Hardie Europe GmbH.



James Hardie Europe GmbH Bennigsen-Platz 1 40474 Düsseldorf www.jameshardie.de

Technical Customer Information (freecall)Phone0800 3864001Emailkontakt@jameshardie.com

 Service
 Centre (order management)

 Phone
 +49 211 54236-200

 Fax
 +49 211 54236-299

Email auftraege@jameshardie.com www.jameshardie.de www.fermacell.de

JHEU-120-00002/03.24/m

